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Elastic fibrous composites with an arbitrary cell microstructure are studied, A
procedure is developed for determining the state of stress and the macroscopic
properties of such materials, A rigorous foundation is given for the algorithms
obtained, Results of computations are presented,

Composites with the simplest cell microstructure have been studied in [1], as
well as by the method of [2] in [3], General methods for investigating elastic
inhomogeneous structures are contained in [4, 5],

1, Computational scheme for a composite, Formulation of the
problem, Let us consider a three-dimensional isotropic medium reinforced by a doub-
ly-periodic (in the sense of the geometry and elastic characteristics) system of groups of
rectilinear fibers with cylindrical cavities (Fig, 1), The geometric and elastic properties
of such a medium are described completely by the microstructure of the (fundamental)
cell being duplicated periodically, Let us assume that the fibers are set in the medium
with some transverse tension, identical at congruent points and constant along the fiber
length, The connection between the medium and fiber is such that the force vector va-
ries continuously during passage through the contact boundary, while the displacement
vector undergoes a jump due to the transverse tension,
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Let us consider the following state of stress to be realized in the bulk

o, = oy (x5, 2,), Gy = 0, (2, %), ez = const (1.1)

Here and henceforth, ;, 55, 03, Ty, Ty3, Ty5 are components of the stress tensor,
€1, €y, €3, Yiz/ 2, 157 2, 55/ 2 are components of the strain tensor,

The system (1,1) decomposes into two linearly independent states of stress "general-
ized plane strain” and "longitudinal shear”

0y == 0y (2, &), 0, = 0, (z, &), ez -~ const 1.2)
Tie = Tpe (71, X3),  Tyg == Tpy = 0
Tiz = Tig (T To),  Tog =% Top (Ty, X))y 07 = 0y == &y = Tpp == U (1,3)

Let us use the regular Kolosov-Muskhelishvili functions ¢ (z) and +f (z) in the com-
plex variable z == z; -} iz, which determine the stresses and displacements by means
of the formulas [6] ——

oy + 0y = 219’ (2) + ¢ (3)] (1.4)
Oy — Oy - 2iTge = 2 [5¢" (2) 4-¢" (2)], % == 3 — v
2G (u + iv) = uq (5) — 2 @' (z) — ¢ (2) — 2Geygvz

to describe the state of stress (1,2),
Besides (1, 4), we have from (1, 2) and Hooke's law

O3 = 26 (L +v)es + v (o, 0,), w= ey, (1. 5)

Let us express the stresses and displacements correponding to (1, 3) in terms of the
regular function #' (z) [6]

Tyg — IToy = G [2F () — cif] (1.6)
U = — Xy, V== CTXy W= F(2) 4+ F (2)

In (1,4)—(1,6) we use the notation; u, v, 1 are the displacement vector compo-
nenets, (; and v are the shear modulus and Poisson's ratio of the material of the medi-
um, and ¢ is some real constant,

Therefore the problem of the theoretical description of a composite reduces to two-
dimensional problems of elasticity theory, In conformity with this, let us consider a plane
medium z, = const, reinforced by a doubly-periodic system of groups of foreign mul-
ticonnected inclusions,

Let w;and oy (Im @; == 0, Im ©, / ®; > ) be the fundamental periods of the

structure, Each period parallelogram I, . (m, n = 0, 41, ...) containsagroup
of inclusions with the elastic characteristics G; and v;. filling the finite multiconnec-
ted domains Dy, (G =1, 2, .. .. k). Let X, (s==1, 2, ..., r;) denote

the hole outlines, J» the finite simply-connected continua bounded by the contours
R N s s . :
Mwns Ly, the interface between the inclusion and the medium, and /) the unboun-
ded domain occupied by the medium (Fig, 1),
We use the following notation:
— ) J _ 7,8 i SE ;
Zm, n = (;J Lm, n Am, n== U }\fm,m }\qn, n= U A!m, ny oi’):lo, O\L(]),I’)
N 1

S
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Let us assume that each of the contours L, ., A};, has a curvature satisfying the

Hélder condition,

Let us assume that the average stresses over the fundamental periods Sy, S;, Sya, T4,
Ty exist in the medium (the forces S 1 2, S1o in Fig, 1 lie in the plane of the sketch,
while the forces 7', T, are perpendicular to it and the dot near the Ty, 7, corresponds
to the direction from the plane of the cross, and the cross along the direction to this plane)
which assures double-periodicity of the stress tensor and quasiperiodicity of the function

() =001 +29 (2 +¥(), 3@ =GRImF(z) — clz /2] @0
The identities
gz + o) —glz) = —L [i (S, + S, cos 8) — S,sin 0] (1.8)
g2+ @) — g (2) = I [i(Syc0s 6 + ) — S1psin 6]
% (2 + o) —y (2 = LT, X+ @) —y(z) =T,
h=lol, L=]a| 8 = arg o,

hence follow,
Integrating the first of the relationships (1,6) over the boundary of the fundamental

eriod parallelogram, we obtain
period paratielog c=0 (1.9)

Quasiperiodicity of the functions @ (z), F (z), of the combination Z ¢’ (z) 4 ¥ (2)
and of the displacements u, v, w follow from (1.4)— (1, 6), (1, 8) and (1, 9) and the
periodicity of the stress tensor,

Summarizing, we arrive at the problem of determining the functions @ (z), ¥ (2),

F (2) and @; (2), ¢; (2), F; (2) which are regular in the domains D and D, (j =
1, 2, ..., k) .respectively, from the system of boundary conditions

@ (1) 4+ 19 (1) + (1) = ¢; (&) + (97 (1) +b; (1) (1.10)
o [0 (6) — 97 () — B (O] — vest =

01 () — 17 0) — 4y (0] — viest 15 @), £ L

o () +igr W+ ¥ O = Cs  tE M
FO+F@O =F0+F0

GIF() —FO =G IF; () —F;(0) 1 Lio
Fy() =TF50) = i€, 1€ b

s=1,2, ...,y (=1,2 ...k

Here h; (t) are the known jumps in the displacement,and Cj, C;, are constants

to be determined,
Conditions for the existence of the given average stresses (1, 8) in the medium must

be appended to (1,10), (1,11),

2, Generatized plane strain of a composite, Let us use the results in
[5, 7] to construct the general representations of the solution of boundary problem (1,10),

. 1
Let us write P (2) = 5— S pOT(E—2z)dt + Az (2.1)

lp, 0

1,11)
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Y= 5 \ EOPO+rOTO— TP O1L¢ — )t +

lg,0
%mg p(t) oyt —z)dt + Bz, zeD
o ) t (t)
1 t o (¢
®; (2) = I S tqiz dt + 2mi S t—z dt
1«%,0 A% o
1 a.p (f) + B;g () — g’ ()
V) = g | s i +
Lz),o
1 ol — T 7i b},s .
o () — @ —_—
Ini S (z_z dt+zz'—zj,ss z& Doy
A s=1
0, 0
i=12,...,k
‘P F B
pdz):Z{-—(—z———_-?)—z-—Zz—P—;—-ﬁ;}, P:mwl+nm2
m, n

PO ={p; (0 te L} @ ={a0) tE Ly}
w (i) = {mjys (t)’ te M):;)}

Here { (2) is the Weierstrass C-function [8], p, (2) is a special meromorphic func-
tion [9], p (£), ¢ (¢), ® (¢) are functions to be determined, z;, & dy, and b, isa
functional given by the relationships [7]

bio=i \ [0 —o@d]

7s8
X0, 0

For piecewise-constant ¢ (£) = {e;, t & Lo}, () = {pj, t < L}o} and the

constants @;and P; (j = 1, 2, . . ., k) we put [5]
1w . 1~f—xj?&j
%==—1 PB=Tm

x+x_,. (1—{—%].)7»3- G

§=g 1 W="1-7, 0 N7,

Using the properties of the function p, (z) [2]

P12+ ©,) —py (2) =T, p (3) + 7y,
Tvm291<—(;v->~5‘,p<u;">, v=1,2

(p (2) is the Weierstrass p-function [8]), and the quasiperiodicity of the Weierstrass -
function, it is easy to show that the representation (2, 1) assures a doubly -periodic distri-
bution of the stresses in D).

The constants A and B in (2,1) are determined from the conditions (1, 8). Evaluat-
ing the left sides in the first two identities in (1, 8) by using the function g (z) from(1,7)
and (2, 1), we obtain a system of two equations in ReAd and B. Solving the system
under the assumption that its compatibility condition
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Ima =0 (2.2)
is satisfied [5], we have
Red = Redy + Y, (Ko + <0y)) (2.3)
B = By, + Yy ({63) — <01) + 2i {145))
ReAL=Re<g—Sa —}—ib— b61>

[O3]
BL=“51;—1“b~3—“—R b—<T——>Rea
1 _
0= e S LOP® +rOTOId+ 5 \ PO
0, ZO,O
——z}a— S p(t)dt, 61:2€<%1->, S:(,Ollm(o?
00

Here {0,;), {05), {Tyz) are the average stresses onareas perpendicular to the coor-
dinate axes, Formulas to transform the stress tensor components as the coordinate system
rotates, are given in [6], '

since ImA does not influence the state of stress [6], let us assume Im A = 0.

Now let us reduce the boundary value problem (1,10) to its equivalent system of Fred-
holm integral equations of the second kind in the functions p (¢), ¢ (¢}, @ (f). Using
the Sokhotskii-Plemelj formulas [10] to pass to the limit values in (2, 1), substituting
them into (1, 10) and assuming [7]

Cj,s: —_ S (J)(t)dS (2.4)
s
0,0
we obtain the desired system
pto) — M; {p (1), g (1), @ (1), to} = Pj (L), o= Loy (2. 5)
g(to) — Ni{p (1), ¢ (1), @ (1), to} = Q; (L), Lo E'L{),o
(0) - J"s {p (l)? q ( )7 ® (t)’ tO} - 0’ to = %’,3

s=1,2,...,r, j=1,2,...,k
M {p(0), q(t) o), to) = 5 {p(t)dln%_%Jr
Lﬂo
i—jq(t)dln = | - mb OSOP
d{(t—to)C(t—to)—Cx(t—to)}—Tm— S{p(t)x
1170

[””ca byt — L (t — to)dt| -+

7

| e 0T =@ |+
M 1L S t(” dt+t0<1+ >ReALT——BL

)

0,

- 2ni ¢
g 2n ) 0 ;
A0

G (t — to)

t—to

Ni{p (@), q(8), o (), to} = — Zm {—— p()dln

Loe
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g()dln el S t) b L

t—to

B%P(l)C(t~to)dt__2:t_i S {“’(t)[t_zo _yt__]_

5 R Bt —t0
0,0 0,0
0 t_;} p 3 oy
Td t—to B §1 to—z Bj toRe AL
t—1o
R, (D) a ()0 (D), to} = S {m(t)dln =
Aéo
t—1o B]ﬂ _
() d- }+ e S { (t)( - t_to)

7
La,o0

o;p (t)

—qmd

}—1—2 —Cj,s

s=1 to—za s

G, (2) = S (2)dz, —d%—lnc(z) = {(2)

4 g 2

1 (51> + {6a) fo (52) — (01> — 2i (T
Pi(ty) = to (1 +T>_1+—2+_°_ : —
J

2G
s [V —vi)esto + R ()]
)
a ¢ 2G
Qs (t0) = — ty == T 7 (= W) esto + By 1)

Let us assume that the functions #; (¢) are differentiable and their first derivatives
satisfy the Hlder condition, For this it is sufficient that the solutions p (f), g (1), ® (?)
possess the same property [10],

Let us note that every solution of the system (2, 5) satisfies the compatibility condition
(2.2) [5]. The operation of the given average stresses in the medium is thereby assured,
Using [7, 5], it can be proved that the system (2, 5) is solvable for any right side, and
always uniquely, Therefore, the system (2, 5), in combination with the representation

(2.1), governs the solution of the initial boundary value problem,

3, Longitudinal shear of a composite, Let usseek the solution of the

boundary value problem (1,11) in the class of regular quasiperiodic functions, A doubly-
periodic stress distribution will thereby be assured in D.
Let us set

F(2)=1(), ze D; F;(2) = I (a), z & Dy, i=1,2,...,k G1)
1(z)=2+u.5 im(t)@(t—z)dt—i—Tm.—S in(t)L(t — z)dt + Ez

Lo,0 2o,0

Here m (t), n (¢) are real functions to be determined
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m(t) = {m; (1), te Ly}, n(t) = {n, (1), t=rp

We find the constant £ in (3,1) from conditions (1. 8). Evaluating the left side of the
last identity in (1, 8) by using the function ¥ (z) , we obtain from (1, 7), (1, 9) and (3,1)

(T 1 8o 61 ] 3,2
Re £ = T Znsme Im‘-f<l_2—— o cos e>] @.2)
{T2s> (1)
ImE = — =5 + 2n11
- t dt . \ — 2 /—(11 — W2
f I()Som() TAS n(t)dt, 6, 2%2), 8, 2g<2>
N 0,0

Here {Ty3) and (T,;) are the average shear stresses on areas perpendicular to the
coordinate axes r; and Z;. The connection between T';, T, and (713>, {T,3) is evident,

We satisfy the boundary conditions (1,11) because of the still unknown functions m (1),

n (1).

Substituting the limit values of the function (3, 1) evaluated by using the Sokhotskii-
Plemelj formulas [10] into (1,11) and assuming as is done in [7] that

Cis = — S n(t)ds (3.3)

7,8
0.0
we arrive at a system of Fredholm integral equations of the second kind in m () and

" m(to) — G4V {m (t), n (1), to} = (3.4)

— (13> Rety), th= Lt];,o

n(to) — V {m (), n(t), to} + C s ==
—é‘ ((tisy Imt, — (13> Rety), fHh= Moo

1 ; (t— t)
V{m (t)vn(t)vto} = S0 ,5 m(t)dln i 0 + .&m S
0,0 Ao,
S (t—to) Im (f01) Reto Imto & »(5—1_
din s (£ — to) nth + mtsin O Im [f < T 7 cos 9>:|

Gy =(G—G)/(GHGy), s=12....r; [=12...,k

The solutions 7 (Z) and n (f) together with their first derivatives of the system (3,4)
satisfy the H8lder condition [10],

Let us prove the solvability of the system obtained, To do this, let us consider the
homogeneous system corresponding to (3, 4) whose solution will be denoted by m, (t) =
{m° @), t= Lf;,o} and 1o () = {n;,° (£), t & AJ5)}. Let us ascribe the super-
script zero to all the functionals and functions corresponding to this solution,

Evidently the homogeneous system corresponds to the boundary value problem (1,11)
for average stresses {T,4) and {T,3> equal to zero,

Using the Dirichlet integral formula [8], it can be shown that the solution of thishomo-
geneous boundary value problem is

I° (2) = const, F;°(z) = const, j=1,2,...,k (3. 5)
ReF° (z) = ReF;° (z), GImF° (z2) = G;1lmF;° (2)
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Passmg to the limit values in (3,1) and taking (3, 5) into account here, we deduce that
n;,s (t)are the boundary values of some functions regular in dys . Hence, by virtue of
the uniqueness theorem for the solution of the Dirichlet problem [8], it follows:

nis()=const, [=1,2....k s=12...,r; (3.6)
According to the Sokhotskii-Plemelj formula, we have for (3.1)
Fj(t)—F(t)Zimj(t), i=1,2,...,k

Substituting the function (3, 5) in this latter relationship, we obtain

m;° (t) = const, j=1,2,...,k (3.7
Evaluating (3,1) by using (3, 7), (3. 6), and taking (3, 5) into account, we find
FP(@)=0, F(2) =0, Cj, =0, my (t) =0, t & oo (3.8)
Returning to the function 7, (¢) and using (3, 3),(3,6) and (3, 8), we have
ng () =0, te& Mo (3.9)

Therefore, the system (3, 4) is solvable for any right side, and always uniquely, The
correctness of the representation (3, 1) is thereby proved,

The system (3,4) and the representation (3,1) determine the solution of the boundary
value problem (1,11) completely,

4, Macroscopic model of & composite, Definition. A macroscopic
model of a composite will be understood to be a homogeneous anisotropic medium pos-
sessing the property that the average strains will agree for identical average stresses act-
ing in the material and in the medium, We hence assume h; (¢2) =0 (j = 1, 2,

, k).

The average strains are determined as follows:

ey = u(z—}-un)—-u(z)

»  e3) =e3 (4.1)
z—l—wz)—v(z) v (z 4 1) — v (z)
@) = l2sin § - I ctg 6
_u(z4 w2) —u (z) v (2 4+ 1) — v (2)
M2 = —5np + .
u(z—{-—ml) — u (2) ctg 0
(yy = 2Lt v ()
_ w(z + w0y —w(z) w(z 4+ 1) — w (2)
(Tes) = Lo — 7 ctg 6
Introducing the average stress
1
<53> = T §S G3d$1dx2, S = (.01 Im (02 (4. 2)

and evaluating the right sides of (4,1), (4.2) by using the formulas (1,4) — (1, 6), (2, 1),
(2.3) = (2. 5), (3, 1) — (3, 4), we write (4,1) as
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{er) = €p1 (01> + Cpa (02> + Cp3 (O3> + cps (Tody  £=1,2,3 (43)
(Vo3> = €44 (Togd -+ €45 {T1g)
(V1g> = Csq (Tagd 1 €55 (Tyg)
Yid = €1 CO1) + Cop T + Cg3 T3> 1 Ces (Tr2>
where ¢;; (i, j = 1, ..., 6) are macroscopic elastic parameters of the composite
which depend only on the elastic characteristics of the composite constituents and on
the geomenry,
For example, for {, j = 4, 5 the expressions ¢;; are

1 2Im fy 1 2R
044—“--5— 5 » 655=—G-~__;_h
21
Cgy == ._m;‘nﬁ_, €54 = 2E;sz

f=Fh<m +fh (Tagd, S = oylm e,

Here the functionals f,, f, are determined by the relationship (3, 2) for (T3> = 1,
(Tas> = 0 and (Tpgd> = 1, <7143 = 0, respectively,

<& <8 {6
il Pl 44 é_
& 7% 7]—«92 /,
/8
14
L0
7 4.z 3/5,

Fig, 2 Fig, 3

It is important to emphasize that the €;; depend on the solutions of the corresponding
doubly -periodic problems in a functional.manner, and it is sufficient to have just several
functionals for the evaluation of ¢;; This circumstance opens a path to diverse appro-
ximate approaches to the description of the macroproperties of composites,

The matrix of the coefficients ¢;; (i, j = 1, 2, 3, 6) is symmeuric and energetic-
ally admissible [5], It can be shown analogously to [5] that this last assertion extendsto
¢;i; (i, j == 4, 5). Therefore, it is admissible to treat (4, 3) as the Hooke's law for the
desired model medium,

As an illustration, let us consider the longitudinal shear of a composite of the boralu-
minum type (the ratio between the shear modulus of the fiber to the shear modulus of-
the medium equals 6, 46) [11] with continuous fibers of elliptical cross section located
at the vertices of a rectangular lattice (w1 = I, @, = ily).

Presented in Figs, 2, 3 are curves of the change in the macroscopic parameters
(Gegs)™t == <(G1d/ G and (Grag)™t = <G,>/ G {G is the shear modulus of the medium) as a
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function of the relative domain sizes o/ l;, b/ ;. In the case under consideration

¢15 = ¢5y = 0. Figure 2 corresponds to a square lattice I,/ I; = 1, and Fig, 3 corresponds
to a rectangular lattice I, / I, = 0.5 (solid lines correspond to <G;> and dashes to <Gy).
It is assumed that the semi-axes of the ellipse a and & are directed along the coordinate
axes z1and ¥, ,respectively,

In the particular case & = b, & = I, the results presented in Fig, 2 agree with the
corresponding results in [3],

Let us note that in deriving (4, 3) the stresses and displacements were averaged within
the limits of a period parallelogram whose dimensions did not exceed 1 mm for the ma-
jority of composites, Hence, replacing a composite by a homogeneous anisotropic medi-
um controlled by (4, 3) in computational practice will apparently lead to satisfactory
results,
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